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Information cascades on degree-correlated random networks
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We investigate by numerical simulation a threshold model of social contagion on degree-correlated random
networks. We show that the class of networks for which global information cascades occur generally expands
as degree-degree correlations become increasingly positive. However, under certain conditions, large-scale
information cascades can paradoxically occur when degree-degree correlations are sufficiently positive or
negative, but not when correlations are relatively small. We also show that the relationship between the degree
of the initially infected vertex and its ability to trigger large cascades is strongly affected by degree-degree

correlations.
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I. INTRODUCTION

Many real-world networks have been shown to exhibit
correlations between degrees of adjacent vertices. For ex-
ample, social interaction networks are typically found to be
assortative (i.e., degrees of adjacent vertices are positively
correlated), while technological and biological networks are
commonly disassortative (i.e., degrees of adjacent vertices
are negatively correlated) [1,2]. Degree-degree correlations
have been shown to have a significant impact on various
network-based dynamical processes [1-7].

Here, we focus on the influence of degree-degree correla-
tions on a threshold model of binary decisions, originally
developed by Watts for uncorrelated generalized random net-
works [8]. In such threshold models, a vertex will change to
a new state if a specified fraction of its neighboring vertices
are in that state. The network is initialized by “seeding” a
small number or fraction of vertices with a novel piece of
information; when this information spreads throughout a sig-
nificant portion of the network, it is referred to as an infor-
mation cascade, akin to processes in real-world systems,
such as propagating failures in power grids [9,10] or the
adoption of new ideas and fads in social networks [11]. The
size and frequency of such information cascades have been
shown to be heavily influenced by various network proper-
ties [8,12-15], but the impact of degree-degree correlations
is not yet completely understood.

A key aspect of this threshold model is that a single vertex
may trigger a global cascade. In the context of technological
networks, such as power grids, these “triggers” represent the
system’s Achilles’ heel, whereas in social systems, they—at
least theoretically—represent the prime targets for marketing
strategists to effectively advertise their product [13,16]. Us-
ing this model, we perform extensive numerical simulations
starting from a single initial seed on large (N=10%) degree-
correlated random networks and investigate the frequency
and size of large-scale information cascades, as well as the
underlying structure of a network’s triggering component.
Elsewhere, we develop analytic results concerning the fre-
quency of global cascades on degree-correlated random net-
works [17], complementing the recent results of Gleeson
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[18], who provided analytic results for cascade sizes. How-
ever, we note that these analytic solutions are not solvable in
an exact fashion, except for the case of highly specialized
networks. Investigating the size and frequency of informa-
tion cascades on generalized random networks with degree-
degree correlations thus requires either numerical solutions
to these analytic formulas or direct simulation. Here, we gen-
erally take the latter approach, as it is more transparent and
less susceptible to numerical error, although we do make
some comparisons to numerical solutions of analytic results.

II. MODEL

Vertices can be in one of two states, active (infected) or
inactive (susceptible), and once a vertex activates, it cannot
deactivate [8]. Every vertex is given an identical threshold-
based response function, where the probability (II) that a
vertex of degree k changes its state from inactive to active is
a function of the fraction of its k neighbors that are active.
Specifically, if x denotes the number of active neighbors of a
vertex of degree k and ¢ denotes the threshold of its re-
sponse function, then

. 3_C>
Nen=1 Tr=? (1)

0 otherwise.

Vertices are updated synchronously, though for the case of
monotonically increasing response functions, as considered
herein, asynchronous updating yields equivalent results.
Vertices that activate in the presence of a single active
neighbor are referred to as vulnerable, and all other vertices
are referred to as stable [8]. Large-scale information cas-
cades triggered by a single vertex can only occur in infinite
random networks if there exists a sufficiently large connected
component of vulnerable vertices [8]. This is referred to as
the vulnerable component, its fractional size is denoted by S,
(all sizes are given as a proportion of the number of vertices
N), and the set of vertices it contains is denoted by ). The
frequency of information cascades is almost completely dic-
tated by S, since any initial placement in (), will lead to a
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cascade of size at least S,. However, stable vertices that are
directly adjacent to the vulnerable component can also trig-
ger large-scale cascades since an initial seed placed in one of
these vertices will ignite the vulnerable component. We will
refer to these vertices as peripheral and denote the set of
peripheral vertices as (),, with size S,. The union of the
vulnerable and peripheral components (1,=(),U(), makes
up what is referred to as the extended vulnerable component
[8], the size of which we denote as S,. In infinite random
networks, S, is exactly the number of vertices that can trigger
a large-scale information cascade, so this quantity will be
equivalent to the frequency with which large-scale cascades
occur if the initial seed is randomly chosen. Vertices outside
of (), are referred to as external, the set of which is denoted
by Q,.

We will define a global information cascade as any cas-
cade that infects 1% or more of the entire network. This
arbitrary distinction [8] is reasonable because the distribution
of cascade sizes is generally bimodal with sizes either well
above or well below 1% (except near the onset of the perco-
lating vulnerable component, where the cascade size distri-
bution obeys a power law [8]). Thus, the terms average glo-
bal cascade size (S,) and global cascade frequency (Fy)
will refer to global cascades only, omitting the lower mode
of the distribution, while average cascade size (S,,,) will be
used to mean the average of all information cascades, com-
bining both modes of the cascade size distribution.

III. METHODS

We consider undirected random networks of N vertices,
with average degree z and a Poisson degree distribution p,
=7ke~*/k!. Random networks were generated by randomly
placing M=Nz/2 edges between pairs of vertices selected
with uniform probability. Duplicate edges were prohibited,
resulting in an exact average degree z.

Following Newman [1], we use e, to denote the probabil-
ity that a randomly chosen edge connects vertices with de-
gree j+1 and k+1. The quantity g,=2e;; is then the prob-
ability that a randomly chosen edge followed in a random
direction leads to a vertex of degree k+1. Degree-degree
correlations are quantified by their assortativity », which is
formally defined [1] as

1
r= ?E Ejk(ejk_‘b'qk)v (2)
qJj k
where 0f1=2kk2qk—[2kqu]2 is the variance of the distribu-
tion ¢;. A network is said to be disassortative if »<<0, uncor-
related if r=0, and assortative if r>0.

We generate networks with a given assortativity, within
some error tolerance, using the following iterative shuffling
routine. At each step, we first measure the assortativity of the
network using Eq. (2). Two edges (a,b) and (x,y) are then
chosen at random with uniform probability such that
a,b,x,y are all distinct. If the observed assortativity is less
than the desired assortativity then we swap the edges such
that the two vertices with the larger degree are connected to
one another and the two vertices with the smaller degree are

PHYSICAL REVIEW E 80, 026125 (2009)

connected together. To instead incrementally decrease assor-
tativity, we connect the two vertices with the largest and
smallest degree, and the two vertices of intermediate degree.
(If either of the new edges were already present then we
leave the network unchanged.) Shuffling continues until the
observed assortativity is within 0.01 of the desired assorta-
tivity. This method exactly preserves the underlying degree
distribution p; since the degree of each vertex remains un-
changed after a swapping event.

We have recently shown [17] that the condition for the
onset of global spreading, triggered by a single initial seed, is

|A| =0 where [A]j+1,k+l = b}ka - kbk+lejka (3)

and b, is the probability that a degree k vertex is vulnerable
[19]. Note that round-off errors in the numerical solution of
Eq. (3) can lead to multiple locations in which this equation
is satisfied; in the results shown herein, we used the extremal
values of z where the determinant of A was numerically
equal to zero.

The vulnerable (£),), peripheral ({),), extended vulner-
able (€,), and external ({),) components were determined
through direct measurement of the realized networks (as in
[8]). The vulnerable component was found by removing all
stable vertices from the network and then using a breadth-
first-search algorithm to determine the largest connected
component of vulnerable vertices. The peripheral component
was then calculated as the set of all stable vertices connected
to the vulnerable component in the original network, and the
extended vulnerable component was calculated as the union
of the vulnerable and peripheral components. The external
component was calculated as the difference between the set
of vertices in the original network and those in the extended
vulnerable component.

IV. SIMULATION DETAILS

Preliminary experimentation at re{-0.5,0.0,0.5} and
1000=N=30 000 showed that results became asymptoti-
cally stable for networks of size N>3200, above which the
size of average cascades (S), frequency of global cascades
(Fy), and size of global cascades (Sy) did not vary signifi-
cantly (p>0.01, unpaired ¢ test for data with unequal vari-
ance, for all comparisons where global cascades occurred).
Thus, in all simulations the number of vertices was held
constant at N=10*, consistent with [8].

We considered thresholds ¢ in the range [0.1, 0.35] in
increments of 0.01. Unless otherwise specified, the average
degree z was varied from 1.0 to 20.0 in increments of 0.2.
Assortativities ranged from r=-0.95 to r=0.95, depending
on z since the shuffling method presented in Sec. III suffers
from some constraints. In particular, it is considerably more
difficult to obtain extremely negative assortativities than it is
to obtain extremely positive assortativities, and this effect is
especially pronounced for low z (see [17] for details). In
Table I, we present the lower and upper bounds of the assor-
tativities of the networks generated for this study, as a func-
tion of z.

For each combination of z and r, ten network instances
were generated. For each combination of network instance

026125-2



INFORMATION CASCADES ON DEGREE-CORRELATED ...

TABLE 1. Ranges of assortativity considered in this study, as a
function of average degree z.

Average degree (z) Range of assortativity (r)

z<1.0 -0.50=r=+0.50
1.0=2z<20 -0.70=r=+0.95
20=z<3.0 -0.85=r=+0.95
3.0=z<5.0 -0.90=r=+0.95
z=5.0 -0.95=r=+0.95

and threshold ¢, the initial seed was placed in each vertex,
meaning an independent simulation was performed for each
of the N=10* initial placements, resulting in almost 10"
simulations.

V. RESULTS

We first investigate the influence of degree-degree corre-
lations on the “cascade window” [8], which delineates the
region in which global cascades can occur, as a function of
the vertex threshold ¢ and average degree z. In order to
concretely ascertain the lower boundary of average degree z
for which global cascades occur, we carried out additional
simulations on random networks with 0.2=<z=1.0 (in incre-
ments of 0.05). In Fig. 1, we depict the frequency of global
cascades as a function of vertex threshold ¢ and average
degree z in disassortative [Fig. 1(a)], uncorrelated [Fig. 1(b)],
and assortative [Fig. 1(c)] random networks. Frequencies
were recorded as the proportion of all simulations that re-
sulted in a global cascade, across all initial placements on
each of the ten network instances, for each combination of ¢
and z. The results of our simulations (Fig. 1, shaded con-
tours) are in excellent agreement with Eq. (3) (Fig. 1, aster-
isks), although this analytic solution occasionally under pre-
dicts the upper z boundary of the cascade window.

As shown in Fig. 1, the cascade window is influenced by
degree-degree correlations. In general, increasing assortativ-
ity r expands the parameter range in which global cascades
are observed (compare the shaded regions in Fig. 1, as the
panels are read from left to right). Specifically, for ¢=0.25,
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FIG. 2. Observed statistics of global cascades as a function of
average degree z for ¢=0.18, on assortative (r=+0.5), uncorrelated
(r=0), and disassortative (r=—0.5) random networks. Each data
point is the frequency of global cascades observed on ten network
instances. The lines correspond to the direct measurements of the
extended vulnerable components (S,). The x axis is scaled
logarithmically.

increasing r consistently decreases the minimum, and in-
creases the maximum, average degree z for which global
cascades occur (compare the heights of the shaded regions in
Fig. 1, as the panels are read from left to right). In uncorre-
lated networks, global cascades were never observed with
¢>0.25 [Fig. 1(b)]. However, at low average degree z, glo-
bal cascades were observed for thresholds ranging from
0.25 < ¢=0.33, for both disassortative networks [Fig. 1(a)]
and assortative networks [Fig. 1(c)].

In Fig. 2, we present the percolation phase transition in
more detail, depicting both the observed frequencies of glo-
bal cascades and the corresponding sizes of the extended
vulnerable component (S,), as a function of z. To be consis-
tent with previous work [8,13], these cascade simulations
pertain to a threshold of ¢=0.18, an arbitrary choice, for
which vertices of degree k=35 are vulnerable (corresponding
to the vertical dashed lines in Fig. 1). For each value of r at
¢=0.18, we find excellent agreement between S, (Fig. 2,
lines) and global cascade frequency (Fig. 2, symbols), as
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FIG. 1. Observed frequency of global cascades, as a function of threshold ¢ and average degree z, for (a) disassortative (r=-0.5), (b)
uncorrelated (r=0), and (c) assortative (r=+0.5) random networks. The color bar corresponds to all panels. The asterisks denote the
numerical solutions to Eq. (3). The dashed vertical lines at ¢=0.18 correspond to the three curves in Fig. 2.
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FIG. 3. Frequency (F,, left column) and size (S, right column)
of global cascades, as a function of average degree z and assorta-
tivity r, for three threshold values: ¢=0.2 (top row), ¢=0.25
(middle row), and ¢=0.33 (bottom row). The color bar corresponds
to all panels. The dashed horizontal lines in panels (a)-(d) are at
r=0, and the dashed vertical lines in panels (e) and (f) correspond
to the data presented in Fig. 4. We were unable to obtain data in the
hatched region (see Table I).

expected. Increasing r decreases the minimum z for which
global cascades are observed and increases the maximum
observed frequency of global cascades (compare the peaks of
the three curves in Fig. 2). The range of z for which global
cascades occur also increases with increasing r, as seen pre-
viously in Fig. 1. Further, increasing r alters the skew of the
functional relationship between global cascade frequency
and z (compare the shape of the curve as assortativity in-
creases from r=-0.5 to r=0 to r=+0.5 in Fig. 2).

In Fig. 3, we depict the effects of average degree z and
assortativity 7 on global cascade frequency (F, Fig. 3, left
column) and global cascade size (S, Fig. 3, right column),
for three vertex thresholds, #=0.20 (top row), ¢=0.25
(middle row), and ¢=0.33 (bottom row). For ¢=0.25 and
r<0, the maximum z for which any global cascades occur is
relatively insensitive to changes in r [note how the right-
most z boundary of the shaded contours below the horizontal
dashed lines in Figs. 3(a) and 3(c) are nearly independent of
r]. However, for r>0, the maximum average degree z for
which global cascades occur increases dramatically as r be-
comes increasingly positive [Figs. 3(a) and 3(c), data above
horizontal dashed line, where the right-most z boundary of
the shaded contours increase rapidly with r]. Although the
frequencies of global cascades near this upper-z boundary are
low, when global cascades do occur they consistently spread
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FIG. 4. Frequency (asterisks) and size (circles) of global cas-
cades, as a function of assortativity r, for z=2.0 and ¢=0.33. The
bars correspond to the sizes of the vulnerable (S, black) and pe-
ripheral (S, white) subcomponents of S,. The dashed line is pro-
vided as a guide for the eyes.

throughout the entire network [as indicated by the black con-
tours in Figs. 3(b) and 3(d); e.g., for z=9 and r=+0.8, com-
pare the low frequency in Fig. 3(a) to the large cascade size
in Fig. 3(b)].

A counterintuitive finding is that at high thresholds (¢
>(.25, Fig. 3, bottom row) and low z, the frequency and size
of global cascades becomes a bimodal function of r [Figs.
3(e) and 3(f)]. In addition, the sizes of global cascades near
the upper-z boundary are significantly reduced relative to
lower thresholds [as shown by the lower grayscale contours
in Fig. 3(f) as compared to Figs. 3(b) and 3(d)]. Further
details of the bimodal response to r at z=2 and ¢=0.33
[vertical lines in Figs. 3(e) and 3(f)] are depicted in Fig. 4,
where we also show the sizes of the vulnerable (S,) and
peripheral (S,) components. Note the sharp transition in glo-
bal cascade size at |r|~0.5 and how the global cascade size
decreases as the frequency of global cascades increases for
[r|—1.

Although the two modes shown in Fig. 4 look similar,
they are caused by distinctly different underlying topological
properties. In disassortative networks [e.g., Figs. 5(a)-5(c)],
the vulnerable component comprises edges between vertices
of alternating high and low degrees. For example, the vul-
nerable component shown in Fig. 5(b) for z=2 and ¢=0.33
comprises alternating vertices of degree k=2 and k=3, with
only a few degree k=1 vertices attached. This results from
the inherent negative degree correlation, where k=1 vertices
frequently connect to stable vertices [k>3, Fig. 5(a)], ex-
cluding them from the vulnerable component. In contrast, for
assortative networks [e.g., Figs. 5(g)-5(i)], vertices of simi-
lar degree are frequently connected in the vulnerable compo-
nent. This is shown for networks with z=2 and ¢=0.33 in
Fig. 5(h), where there are clusters of vertices of k=3 and
chains of vertices with k=2, most of which are terminated by
k=1 vertices. The probability of stable (k>3) vertices con-
necting to the core of k=2 and k=3 vertices is higher in
disassortative networks [Fig. 5(a)] than in assortative net-
works [Fig. 5(g)]. Consequently, the peripheral component of
k>3 vertices is larger in the disassortative networks [Fig.
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A

FIG. 5. Visualizations of random network properties with z=2 and disassortative (r=-0.8, top row), uncorrelated (r=0, middle row), and
assortative (r=+0.8, bottom row) degree-degree correlations. In (a), (d), and (g), we visualize averages of the E matrices for all ten network
instances (N=10 000) used at each parameter combination. Shading (ranging from white to black) of matrix entries in E correspond to the
probabilities (ranging from 0 to 0.17) with which a randomly chosen edge connects vertices of degree j and k; entries corresponding to
vertices with k> 6 occur with very low frequency and so are not shown. In (b), (e), and (h), we depict the extended vulnerable component
(S,) for ¢=0.33 for individual random networks with N=200 (for visual clarity). Peripheral vertices (k>3) are denoted as white squares;
vertices in the vulnerable component are denoted as circles and are colored according to degree: white (k=1), gray (k=2), and black (k
=3). The corresponding pie charts in (c), (), and (i) denote the proportions of degrees found in these extended vulnerable components (b),

(e), and (h).

5(c)] than in the assortative networks [Fig. 5(i)]. In uncorre-
lated networks, vulnerable and stable vertices are likely to
connect to one another [Fig. 5(d)], frustrating the formation
of a sizable extended vulnerable component [Fig. 5(e)],
hence prohibiting global cascades (Fig. 4).

As illustrated in Fig. 5, the probability with which a ver-
tex of degree k is attached to the vulnerable component (and
consequently, the frequency with which it triggers a global
cascade) is highly influenced by degree-degree correlations.
For an average degree z sufficiently above the percolation
threshold, global cascades typically topple the entire network
[8] (Fig. 3). Taken together, these two observations imply
that the relationship between the degree of the vertex in
which the initial seed is placed and the average size of the
cascade (S,,) it triggers is also heavily influenced by degree-
degree correlations. To further illustrate this effect, we
present in Fig. 6 the average cascade size for ¢=0.18 as a
function of average degree z for varying assortativities [Figs.
6(a)-6(e)]. As in [13], we make the arbitrary distinction be-

tween high-degree vertices (those in the top 10% of the de-
gree distribution p;) and average degree z vertices (for net-
works with noninteger average degree z, the influence of an
average degree vertex was calculated via linear interpolation
between S,,, observed at |z] and [z], consistent with [13]).
Here, we also report on cascades triggered by low-degree
vertices (those in the bottom 10% of the degree distribution
Po-

As shown in Fig. 6, the relative influence of high-degree
vertices is nonmonotonic, with maximum effect in uncorre-
lated networks and reduced effect at both negative and posi-
tive assortativities, while the relative influence of low-degree
vertices increases monotonically as assortativity increases.
As noted in [13], the average size of cascades triggered by
high-degree vertices is marginally greater than those trig-
gered by average degree vertices in uncorrelated networks, a
result reproduced here in Fig. 6(c). This relationship holds
for moderately disassortative networks [r=-0.5, Fig. 6(b)],
but as networks become strongly disassortative [r=-0.9, Fig.
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FIG. 6. Average cascade size with ¢=0.18 as a function of average degree z given that the initial seed was placed in high-degree vertices
(in the top 10% of the degree distribution, squares), average degree vertices (circles), or low-degree vertices (in the bottom 10% of the degree
distribution, diamonds), for random networks with (a) r=-0.9, (b) r=-0.5, (¢) r=0, (d) r=+0.5, and (e¢) r=+0.9. Note that in (a), we were
not able to obtain data for z<<3 (Table I). Lines are provided as a guide for the eyes.

6(a)], the average size of cascades triggered by high-degree
vertices falls below those triggered by average degree verti-
ces. This occurs because the extreme disassortativity forces
many high-degree vertices to connect to k=1 vertices, ex-
cluding them from (). In contrast, in strongly disassortative
networks with very low z, average degree vertices often con-
nect to one another and thus are frequently included in . In
networks with even moderately positive assortativity [Fig.
6(d)], the average cascade size triggered by average degree
vertices exceeds those triggered by high-degree vertices, ex-
cept in the sparsest (low z) networks, and this reversal be-
comes highly pronounced for dense networks (high z) and
strong positive assortativity [r=+0.9, Fig. 6(e)]. In general,
the size of cascades triggered by low-degree vertices in-
creases as assortativity is tuned from strongly negative [Fig.
6(a)] to strongly positive [Fig. 6(e)]. In disassortative net-
works, low-degree vertices connect to high-degree stable
vertices and thus cannot trigger cascades. On the other hand,
for dense networks (high z) with strongly positive assortativ-
ity (r=+0.9), sizable information cascades are only triggered
by low-degree vertices [Fig. 6(e)]. This occurs because
highly connected stable vertices are likely to connect only
with one another, forming stable clusters in (),, whereas low-
degree vulnerable vertices possess fewer connections and
most often connect with one another, forming a dense core of
vulnerable vertices in (), from which large cascades easily
arise. Figure 6 also clarifies which vertices contribute to the
expansion of the upper z boundary of the cascade window as
assortativity increases (Fig. 1), with the emphasis shifting
increasingly to lower degree vertices.

VI. DISCUSSION

In certain random networks of sufficient density (high av-
erage degree z), information cascades occur relatively infre-
quently, but when they do occur they often spread throughout
the entire network [8]. Such systems have been characterized
as “robust yet fragile” [20]. We have shown that increasing
assortativity in a random network can exacerbate this effect,
especially in networks whose degree-degree correlation is
positive [Figs. 1 and 3(a)-3(d)]. Thus, not only do cascades
occur more frequently in assortative networks but they also

typically cover a greater proportion of the network. While
this may be perceived as a blessing to marketing strategists,
it is cause for concern regarding other forms of social con-
tagion such as misinformation and disease. Conversely, the
disassortative degree-degree correlations of technological
and biological networks [1] may render these systems more
resilient to small perturbations.

Increasing assortativity leads to an earlier onset (i.e., at
lower z) of a percolating extended vulnerable component and
an overall change in the shape of the functional relationship
between global cascade frequency and average degree (Fig.
2). This result is in line with observations concerning the
giant connected component in networks with heavy-tailed
degree distributions [1]. However, in those networks, the
maximum size of the giant connected component was found
to be larger in disassortative networks than in uncorrelated or
assortative networks [1]. Our experiments on random net-
works with Poisson degree distributions demonstrate that the
size of the extended vulnerable component is largest when
degree-degree correlations are assortative (Fig. 2).

In uncorrelated random networks with Poisson degree dis-
tributions, it is known [8] that global cascades starting from
a single initial seed do not occur when ¢>0.25 [Fig. 1(b)].
However, for low average degree z, we observed global cas-
cades for ¢=0.33 in both disassortative [Fig. 1(a)] and as-
sortative [Fig. 1(c)] networks. This results in a bimodal re-
sponse of cascade frequency to r and relatively smaller
cascade sizes [Figs. 3(e) and 4], as compared to the unimodal
response observed with ¢=0.25 [Figs. 3(a) and 3(c)]. It is
important to point out that bimodality only occurs for low
average degree, which is a special case for disassortative
networks.

Identifying which vertices will trigger large information
cascades has long been of interest, both in applications
where the desire is to promote such cascades (as in market-
ing [16]) as well as in applications where the desire is to
prevent such cascades (as on the electrical power grid [10] or
in epidemiology [6]). A common assumption among the so-
cial scientists and marketing strategists is that the most con-
nected individuals (so-called “influentials”) are the best can-
didates for triggering a sizable information cascade [16].
Recent results in uncorrelated random networks [13] have
demonstrated that cascades resulting from seeding high-
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degree vertices (those in the top 10% of the degree distribu-
tion) were actually not much larger than those emanating
from vertices of average degree [this result is recreated in
Fig. 6(c)]. Here, we found that cascades are possible in much
denser networks that are positively assortative, and, in these
networks, the low and average degree vertices are respon-
sible for triggering the largest cascades [Figs. 6(d) and 6(e)],
resulting from an amalgamation of vulnerable vertices (a
similar result was obtained in [13] for group-based net-
works). This result may be of direct relevance to the social
science and marketing communities and may speak to the
relative success of viral marketing campaigns that leverage
online social networking [21] such as the Obama campaign
[22,23]. In contrast, in disassortative networks the cascade
window is restricted to sparser networks and, in these net-
works, we found that cascades resulting from seeding high-
degree and average vertices does result in much larger cas-
cades [Figs. 6(a) and 6(b)] than those observed from seeds
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placed in low-degree vertices. These results may indicate
that targeted infection of highly connected vertices may be
an effective strategy for disseminating information in net-
works with negative degree-degree correlations, such as the
Internet. Finally, we note that the phenomena reported here
in both global cascade frequency and size are not apparent
from the analytical treatments of this model [17,18], or from
other models of information spreading on degree-correlated
networks (e.g., [6]).
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